VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

(Accredited by NAAC with A++ Grade)

B.E. (C.S.E.: CBCS) III-Semester Main Examinations, February-2021 Transform Techniques, Probability and Statistics

Time: 2 hours

Max. Marks: 60

Note: Artswer any NINE questions from Part-A and any THREE from Part-B

Part-A $(9 \times 2 = 18 \text{ Marks})$

Q. No.	Stem of the question	M	L	СО	PO
1.	Determine a_1 in the Fourier series for $f(x) = x , -\pi < x < \pi$.	2	1	1	1,2
2.	Find the sum of the Fourier series of $f(x) = \begin{cases} \pi, & -2 < x < 0 \\ 0, & 0 \le x < 2 \end{cases}$ at $x = 0$.	2	1	1	1,2
3.	Define Fourier transform and inverse Fourier transform.	2	1	2	1,2
4.	If $F\{f(x)\}=F(s)$, then show that $F\{f(x-a)\}=e^{isa}F(s)$.		2	2	1,2
5.	A random variable X has the following probability distribution:	2	1		1, 12
	X: 0 1 2 3 4	2	1	3	1, 14
	P(X) 3k 3k k 2k 6k				
6.	Find the value of k.				
0.	If the distribution function of a random variable X is $F(x) = \begin{cases} (1+x)e^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$,	2	2	3	1,2
	then find the probability density function of X.				
7.	Define null hypothesis and alternative hypothesis.	2	1	4	1 1
8.	Write about level of significance in hypothesis testing.	2	2	4	1, 1
9.	Derive the normal equations for fitting a straight line.	2			1, 1
10.		2	3	5	1, 1
	Show that the arithmetic mean of the regression coefficients is greater than the correlation coefficient.	2	2	5	1, 1
11.	State Dirichlet's conditions for Fourier series expansion.	2	1	1	1,2
12.	Find the Fourier cosine transform of $f(x) = \begin{cases} 1 & 0 < x < 2 \\ 0, & x \ge 2 \end{cases}$.	2	1	2	1,2
					-
3. a)	$Part-B (3 \times 14 = 42 Marks)$	Q	2	1	10
J. u)	Obtain the Fourier series to represent $f(x) = \left(\frac{\pi - x}{2}\right)^2$, $0 < x < 2\pi$.	0	2	1	1,2
b)	Expand $f(x) = \cos x $ as a Fourier series in the interval $(-\pi, \pi)$.	6	2	1	1,2
	Language that have a discovered to be been been been a commone		10 1		
4. a)	Find the Fourier transform of $f(x) = \begin{cases} 1, & x < 1 \\ 0, & x > 1 \end{cases}$ and hence evaluate $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx$.	8	3	2	1,2
b)	If the Fourier sine transform of $f(x)$ is $\frac{e^{-as}}{a}$, then find $f(x)$.	6	3	2	1,2

Code No.: 13233

15. a)	A continuous random variable X has the probability density function	10	2	3	1, 12
	$f(x) = \begin{cases} k(1-x^2), & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$ Find (i) k (ii) E(X) (iii) Var(X) (iv)				
	$P\left(X < \frac{1}{2}\right)$ and (v) distribution function of X.				
b)	If X is a random variable, then prove that $Var(kX+c) = k^2 Var(X)$, where k and c are constants.	4	2	3	1, 12
16. a)	A random blood sample for test of fasting sugar for 10 boys gave the following data (in ms/dl):	7	4	4	1, 12
	70,120,110,101,88,83,95,107,100,98 Does this data support the assumption of population mean of 100 mg/dl? Test at				
4	5% level of significance.				
b)	Two samples are drawn from two normal populations. From the following data, test whether the two samples have the same variances at 5% level of significance.	7	4	4	1, 12
	Sample I : 60 65 71 74 76 82 85 87				
	Sample II : 64 66 67 85 78 88 86 85 63 91				
17. a)	Calculate the correlation coefficient from the following data:	7	1	5	1, 12
	X: 1 2 3 4 5 6 7 8 9				1, 12
b)	Y: 9 8 10 12 11 13 14 16 15 Using the method of least squares, fit a straight line of the form $y = a + bx$ to the	7	3	5	1, 12
	following data:	1			1, 12
	x: ' 0				
18. a)	Find the half range cosine series for $f(x) = (x-1)^2$ in (0,1) and hence show	7	3	1	1,2
	that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.				
b)	Obtain the Fourier sine transform of $e^{- x }$. Hence show that	7	3	2	1,2
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\int_{0}^{\infty} \frac{x \sin kx}{1 + k^{2}} dx = \frac{\pi e^{-k}}{2}, k > 0.$				
19.	Answer any two of the following:				
a)	In a distribution which is exactly normal, 12% of the items are under 30 and 85% are under 60. Find the mean and standard deviation of the distribution.	7	4	3	1, 12
5)	Fit a Poisson distribution to the following data and test for goodness of fit at 5% level of significance.	7	4	4	1, 12
	x: 0 1 2 3 4 5 f: 110 170 130 60 23 7				
c)	The two lines of regression are $x = -0.4y + 6.4$ and $y = -0.6x + 4.6$. Find the mean	7	3	5	1, 12

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programmed Outcome

		0
S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	60
2	Knowledge on application and analysis (Level-3 & 4)	40
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable)	0

2 Jos